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Deformation of a block of elastic material under dynamic loading is considered within 
the framework of the planar dynamic problem of elasticity theory. The numerical solution is 
based on Godunov's [i] finite difference methods and modifications thereof [2-4] for calcula- 
tion of discontinuous flows. The stress-deformed state of the block is studied for various 
loading systems modeling the action of a high energy striker of various configurations. With 
a special blunt striker configuration a wedge of destroyed material is formed ahead of the 
striker, i.e., the instrument as it were sharpens itself at every blow, while ahead of the 
wedge there is a region of tensile stress, which can lead to the appearance of cracks. 

i. Formulation of the Problem and Method of Solution. The functions u(x, y, t), v(x, 
y, t), o1(x, y, t), o2(x, y, t), ~12(x, y, t) are defined, which in the range 0~x.~<], 0~ 
y~1, ()<t~ T, satisfy the system of equations (see [2-4]) 

at ~--~=0, ~- ~-- ~ = 0 ,  

initial conditions 

and boundary conditions 

#'Cl2 0r O~ 
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Here u, v are velocities along the axes Ox, Oy; oi, o 2 are normal stresses along those 
axes; ~2 is the tangent stress; p is density; I, ~ are Lam6 parameters. 

The problem of Eqs. (I)-(3) must now be solved numerically. We will use the algorithm 
of [4], which developed the method of Godunov and Ivanov [i, 2] for calculation of discon- 
tinuous solutions. The method of [i] has the property of monotonicity and is of first order 
accuracy. In each layer in time the solution is considered piecewise-continuous, and expres- 
sions for the decay of an arbitrary discontinuity are used for the solution for the next 
stage. In [2] a method was proposed for approximating the solution with piecewise-linear 
polynomials. This method corresponds well to problems characterized by the presence of previ- 
ously unknown discontinuity surfaces [3]. In [4] a set of methods was developed allowing 
finding a solutions with greater accuracy then the techniques of [i, 2], while retaining their 
approach. The improvement was achieved by including a larger number of terms in auxiliary 
equations and finally producing a family of difference schemes containing a larger number of 
order parameters (dissipation constants). 

The values of the eight control parameters of the problem of Eqs. (i)-(3) were chosen 
such that the slopes of the calculated fronts of the incident (Fig. i, solid lines) and re- 
flected (dashed lines) were maximal (arrows indicate the direction of front motion). Numeri- 
cal experiments were performed for a model material with characteristics p = i, I = 3/7, ~ = 
2/7, a block of unit dimensions being considered, while at the initial moment t = 0 on the 
boundary y = i a unit normal compressive load was specified [see Eqs. (1)-(3)]. Calculation 
was terminated after the period T,, when the disturbance reflected from the rear boundary 
returned to the original one. These parameter values were used to solve all subsequent prob- 
lems differing from that of Eqs. (1)-(3) only in boundary conditions. 
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Fig. 1 

Three different methods for loading the block of material were considered: a) a blunt 
instrument with slippage along the block surface; b) a blunt instrument with tangent stress 
present; c) a blunt hollow instrument with slippage along the block surface, namely: 

U = :  'I~12 = 0 ( X  : : -  0 ) ;  (~ [  :== '~12 : 0 ( 3 '  - :  t ) ;  U - =  V : :  0 

(y := 0); "q2 = 0 (y = t ) ;  ( 4 a )  

% = - - t ,  0 ~< x ~ 0,225; z2 ::: 20x - -  5,5, 0,225 < x ~ 0,275; 

~2 = O, 0 , 2 7 5 < x ~ - ~ 1  (y : 1); 

u : -  ~12 =: 0 (x : 0); o I - - % 2 : : -  0 ( x : :  t ) ;  u - -  v== 0 ( y - :  0); ( 4 b )  

%2 : 0,5 sin ~~4~x, 0 ~ x ~ 0,25; ~12 = O, 0,25 < x ~ 1 

(u-== l); 
% . . . . .  t ,  0 ~ x ~ 0,225; o~, = 20x - -  5,5, 0,225 < x ~ 0 ,275;  

~ = 0 ,  0 , 2 7 5 < x ~ 1  (y = 1); 
. :  

u : - ~ 1 2 = 0  ( x = O ) ;  ~ , : : T , 2 = O  ( x : t ) ;  u - : v = O  ( 4 c )  

(y o); ~1,~ : o (y -: 1); 
a s = O, 0 ~ x ~ 0,1;  o2 ~ - - l ,  0 , t  < x ~ 0,225; c~ 2 = 20x - -  5,5, 

0 , 2 2 5 < x ~ 0 , 2 7 5 ;  c~., = 0, 0 , 2 7 5 < x ~ - ~ 1  (y -= t) .  

The problems thus formulated, those of Eqs. (i), (2), (4a); (i), (2), (4b); and (i), (2), 
(4c) model central loading, therefore half the block is considered, with u = 0 at x = 0. 
Boundary conditions (4a), (4b), (4c) differ only in the values of T12 , o 2 on the boundary 
y = i. All boundary conditions for o 2 model loacling by a blunt instrument with curved outer 
edge. 

2. Evaluation of Results. Calculation results for the five successive times 0.2T,; 
0.4T,; 0.6T,; 0.ST,; T, were depicted by stress isolines oi, o 2, rmax" Some of the results 
are shown in Figs. 2-5. Figure 2 shows o 2 isolines for t = 0.8T, and boundary conditions 
(4a)-(4c), with curves corresponding to conditions (4a) being labeled a, those for Eq. (4b), 
b, and (4c), c. Figure 3 shows oi isolines for t = 0.6T,, and Figs. 4, 5, ~max isolines for 
t = 0.6T, and t = 0.8T,, respectively. Comparing the graphs we can note the following fea- 
tures of the dynamic block deformation process. The character of block loading, i.e., the 
various values of ~12, o2 on the edge y =: I, O ~ x ~ a  ~= 0.25, exert a significant effect on 
the distribution of all stresses o I, 02 , Tma x over the entire depth of the block in a band 
the width of which is not greater than 0.8a. Beyond the limits of this band the effect of 
the character of loading is practically unnoticable (Figs. 2-5). Within the region where 
loading has an effect, the problem with boundary conditions (4b) is a "core" with center at 
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the point (0, 0.8) of lowered stresses 0 2 and Tma x (Figs. 2b, 4b, 5b) while for Eq. (4c) we 
have a "wedge" of reduced stress 0 2 (Fig. 2c) and mma x (Figs. 4c, 5c). in the vicinity of 
the point (0, i) the problem with boundary conditions (4b) constantly maintains a tensile 
stress 01 (Fig. 3b) and the highest stress mma x (Figs. 4b, 5b). The o I stress distribution 
in the problems with boundary conditions (4a) and (4c) practically coincide over the entire 
region (Fig. 3a, 3c)~ 

The isolines shown in Fig. 6 for mmax at various times can be related to formation of a 
shear crack, if we use Zhurkov's kinetic concept of failure [5]. According to this concept 
the fundamental characteristic of failure is its duration (see, for example, [6]). For a 
given inensity of tensile or shear stress the duration is identified as the time from which the 
moment stress is applied until the body separates into places. After accumulation of damage 
in the block material a system of microcracks is formed in the region where the load is ap- 
plied (cross-hatched region in Fig. 6); these cracks merge into a magistral, forming as it 
were a "sharp" instrument ahead of the striker with a central orifice, which permits breakage 
of the block into parts, as encouraged by the presence of zones of tensile stress ahead of the 
the "sharp instrument." Thus, another method of block failure aside from the traditional one 
is possible. 
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The above does not agree with the assertion that "with increase in blow energy the ef- 
fect of instrument geometry on efficiency of rock breakup decreases significantly..." [7, 
p. 29]. The numerical experiments performed show that with increase in blow energy one can 
in principle achieve destruction of the block material with every blow. 
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ANALYSIS OF CREEP IN A RECTANGULAR PLATE WITH A CIRCULAR: 

ORIFICE UNDER TENSION 

V. N. Solodovnikov UDC 539.376 

A finite element solution of the problem is offered using the theory of strengthening 
type creep. Because of creep the stress concentration at the edge of the orifice is reduced, 
and displacement as a function of reduced time increases at an almost constant rate. Moir~ 
type displacement isoline patterns are presented. 

Fundamental Equations. Expressions for the deformations in terms of displacements, the 
equilibrium equation, and relationships between stresses and deformations in the plane 
stressed state are taken in the form [i, 2] 

e l l  = Ul,I~ e22 ~ u2,2, 2e12 = Ul, 2 -~  z~2,1~ 

ff11,1 ~ ~12,2 = O, 012,1 @ 022,2 : O, 

en = E - ' ( o n  - -  va~2) + On, e22 = E-1(~22 - -  van)  + P22, 

el~ = (t + ~)E-1G12 + pn. 

Here E is Young's modulus, ~ is the Poisson coefficient, u i are the displacements; eij, the 
deformations; oij, the stresses; Pij are the creep deformations (i, j = I, 2) in the Cartesian 
coordinate system x I, x2; the subscripts 1 and 2 following the comma indicate partial differ- 
entiation with respect to x I and x2, respectively. 

In contrast to [3-7], to calculate plate creep we will use the strengthening type creep 
theory of [2, 8]. In the uniaxially stressed state the creep deformation p and the stress o 
as a function of time t are interrelated in this theory by an expression 

p h d p / d t  = a o  ~, (1 )  
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